Web Analytics Made Easy - Statcounter

دانشمندان ژاپنی و آمریکایی کشف کردند که یک آهنربای کوانتومی سه میلیارد بار سردتر از فضای میان‌ستاره‌ای است و این کشف می‌تواند به آنها در ساخت ابررساناها یا عایق‌های با تحمل دمای بالا کمک کند.

به گزارش ایسنا و به نقل از آی‌ای، در بیانیه مطبوعاتی دانشگاه "رایس" توضیح داده شده است: فیزیکدانان ژاپنی و آمریکایی از اتم‌هایی حدود سه میلیارد برابر سردتر از فضای میان‌ستاره‌ای برای باز کردن دریچه‌ای به قلمروی ناشناخته مغناطیس کوانتومی استفاده کرده‌اند.

بیشتر بخوانید: اخباری که در وبسایت منتشر نمی‌شوند!

جمله‌ی بالا متعلق به یک فیلم علمی تخیلی به نظر می‌رسد، اما در واقع به همین زندگی واقعی تعلق دارد.

آنچه دانشمندان کشف کردند نوع جدیدی از آهنربای کوانتومی است که از اتم‌هایی ساخته شده است که فقط یک میلیاردم درجه گرم‌تر از صفر مطلق - دمای دست نیافتنی که در آن حرکت همه اتم‌ها متوقف می‌شود – دما دارند.

ماده‌ای سردتر از عمق فضا

"کادن هازارد" نویسنده نظریه این مطالعه از دانشگاه رایس در بیانیه مطبوعاتی توضیح داد که یک تیم مستقر در کیوتو به سرپرستی "یوشیرو تاکاهاشی"، از لیزر برای خنک کردن فرمیون‌های اتم‌های ایتربیوم، (ذراتی مانند الکترون‌ها و یکی از دو نوع ذره‌ای که همه مواد از آنها ساخته شده‌اند) استفاده کرد. در نهایت، آنها یک آهنربا بر اساس خاصیت چرخشی ایجاد کردند که دارای شش گزینه با برچسب رنگی است.

"هازارد" گفت: این تیم ذرات را تا چنین دماهای پایینی خنک کردند، زیرا فیزیک در این شرایط شروع به حرکت به سمت مکانیک کوانتومی شدن می‌کند و به شما امکان می‌دهد پدیده‌های جدیدی را مشاهده کنید.

در نهایت، رفتارهای کوانتومی اتم‌ها زمانی که تا کسری از درجه صفر مطلق سرد می‌شوند، آشکارتر می‌شوند و با استفاده از لیزر برای خنک کردن اتم‌ها، مشاهده آنها آسان‌تر است، زیرا حرکات آنها به شبکه‌های نوری محدود می‌شود. این شبکه‌ها کانال‌های یک بعدی، دو بعدی و سه بعدی نور هستند که می‌توانند به عنوان شبیه‌سازهای کوانتومی استفاده شوند که قادر به حل مسائل پیچیده‌ای هستند که رایانه‌های معمولی قادر به حل آنها نیستند.

آزمایشگاه "تاکاهاشی" در ژاپن از این شبکه‌های نوری برای شبیه‌سازی "مدل هابارد" استفاده کرد که یک مدل کوانتومی است که معمولاً برای بررسی رفتار مغناطیسی و ابررسانایی مواد استفاده می‌شود.

همانطور که در بیانیه مطبوعاتی محققان آمده است، مدل هابارد که در کیوتو شبیه‌سازی شده دارای تقارن خاصی است که به نامSU(N) شناخته می‌شود که در آن SU یک روش ریاضی برای توصیف تقارن و N حالت‌های چرخش یا اسپین ممکن ذرات موجود در مدل را نشان می‌دهد.

اتم‌های ایتربیوم دارای شش حالت اسپین ممکن هستند و شبیه‌سازی کیوتو اولین موردی است که همبستگی‌های مغناطیسی را در مدل هاباردSU(۶) نشان می‌دهد که محاسبه آن در رایانه غیرممکن است.

"ادواردو ایبارا-گارسیا-پادیلا" یکی از نویسندگان این مطالعه و دانشجوی کارشناسی ارشد در گروه تحقیقاتی "هازارد" گفت: هدف مدل هابارد گرفتن حداقل مواد تشکیل دهنده است تا بفهمد چرا مواد جامد به فلز، عایق، آهنربا یا ابررسانا تبدیل می‌شوند.

وی در ادامه توضیح داد: داشتن توانایی مهندسی آن در آزمایشگاه فوق‌العاده است. اگر بتوانیم این را درک کنیم، ممکن است ما را به سمت ساخت مواد واقعی با خواص جدید و دلخواه راهنمایی کند.

فیزیکدانان مدت‌هاست به چگونگی برهمکنش اتم‌ها در آهن‌رباهای اگزوتیک علاقه‌مند بوده‌اند، زیرا تصور می‌کنند برهم‌کنش‌های مشابهی در ابررساناهای با دمای بالا که موادی هستند که الکتریسیته را به خوبی هدایت می‌کنند، رخ می‌دهد. برای مثال، با درک بهتر آنچه اتفاق می‌افتد، می‌توانند ابررساناهای بهتری را کنار هم قرار دهند.

این آزمایش‌ها در کیوتو درهایی را به روی فیزیکدانان باز می‌کند تا با مشاهده مستقیم آنها در عمل، نحوه عملکرد این سیستم‌های کوانتومی پیچیده را بیاموزند.

این مطالعه در مجله Nature Physics منتشر شده است.

انتهای پیام

منبع: ایسنا

کلیدواژه: صفر مطلق فضای عمیق اتم ها

درخواست حذف خبر:

«خبربان» یک خبرخوان هوشمند و خودکار است و این خبر را به‌طور اتوماتیک از وبسایت www.isna.ir دریافت کرده‌است، لذا منبع این خبر، وبسایت «ایسنا» بوده و سایت «خبربان» مسئولیتی در قبال محتوای آن ندارد. چنانچه درخواست حذف این خبر را دارید، کد ۳۵۹۲۳۸۷۵ را به همراه موضوع به شماره ۱۰۰۰۱۵۷۰ پیامک فرمایید. لطفاً در صورتی‌که در مورد این خبر، نظر یا سئوالی دارید، با منبع خبر (اینجا) ارتباط برقرار نمایید.

با استناد به ماده ۷۴ قانون تجارت الکترونیک مصوب ۱۳۸۲/۱۰/۱۷ مجلس شورای اسلامی و با عنایت به اینکه سایت «خبربان» مصداق بستر مبادلات الکترونیکی متنی، صوتی و تصویر است، مسئولیت نقض حقوق تصریح شده مولفان در قانون فوق از قبیل تکثیر، اجرا و توزیع و یا هر گونه محتوی خلاف قوانین کشور ایران بر عهده منبع خبر و کاربران است.

خبر بعدی:

ظهور شاه‌کلید قفل‌های دیجیتال/ رایانه‌های کوانتومی رمزگذاری را بی‌معنا می‌کنند

خبرگزاری علم و فناوری آنا؛ بار‌ها شنیده‌ایم که هکر‌ها با سرقت اطلاعات کارت‌های بانکی، موجودی حساب افراد را خالی کرده‌اند و متخصصان توصیه‌هایی برای پیشگیری از آن دارند، اما اگر قرار باشد چنین اتفاقاتی به روند همیشگی تبدیل شود چه؟ یعنی دنیایی را تصور کنید که قفل اطلاعات الکترونیکی ناگهان از کار می‌افتند!

این یک سناریوی علمی، تخیلی نیست. زمانی که رایانه‌های کوانتومی به اندازه کافی قدرتمند شوند، این نگرانی ممکن است به واقعیت تبدیل شود. این رایانه‌ها می‌توانند از ویژگی‌های عجیب دنیای کوانتومی برای رمزگشایی قفل‌هایی استفاده کنند که شکستن آنها برای رایانه‌های معمولی سال‌ها طول می‌کشد. ما نمی‌دانیم چه زمانی این اتفاق می‌افتد، اما بسیاری از مردم و سازمان‌ها در حال حاضر نگران سرقت اطلاعات رمزگذاری شده توسط مجرمان سایبری و ذخیره آن برای رمزگشایی رایانه‌های کوانتومی در آینده هستند.

با نزدیک شدن دوران ظهور رایانه‌های کوانتومی، رمزنگاران در تلاش‌اند تا طرح‌های محاسباتی جدیدی برای ایمن کردن داده‌ها در برابر حملات فرضی ابداع کنند. ریاضیات درگیر در این ماجرا بسیار پیچیده است، اما بقای دنیای دیجیتال ما شاید به همین تلاش وابسته باشد.

رمزگذاری ضد کوانتومی

نفوذ به سیستم‌های امنیتی آنلاین اغلب در یک مسئله ریاضی و در دو عدد خلاصه می‌شود که وقتی در یکدیگر ضرب می‌شوند، عدد سوم به دست می‌آید و این عدد کلید باز کردن قفل اطلاعات محرمانه است. با بزرگتر شدن این عدد، مدت زمانی که یک کامپیوتر معمولی برای حل این مشکل صرف می‌کند بیشتر می‌شود.

انتظار می‌رود رایانه‌های کوانتومی بتوانند در آینده این کد‌ها را خیلی سریع‌تر بشکنند. بنابراین، رقابت بر سر یافتن الگوریتم‌های رمزگذاری جدیدی است که می‌توانند در برابر یک حمله کوانتومی مقاومت کنند.

مؤسسه ملی استاندارد و فناوری ایالات متحده سال‌ها است که الگوریتم‌های رمزگذاری «ضد کوانتومی» را خواستار شده و با وجود تلاش‌های فراوان برای ایجاد چنین الگوریتم‌هایی، تعداد بسیار کمی موفق به قبولی در این آزمون شده‌اند. یکی از الگوریتم‌های پیشنهادی به نام «کپسوله‌سازی کلید ایزوژنی فوق منفرد» بود که در سال ۲۰۲۲ با کمک نرم‌افزار ریاضی ماگما (Magma) در دانشگاه سیدنی توسعه یافته بود و به طرزی باورنکردنی شکست خورد.

این رقابت امسال داغ شده است. در ماه فوریه، اپل سیستم امنیتی خود را در پلتفرم آی مسیج (iMessage) به روزرسانی کرد تا از داده‌هایی که ممکن است در آینده توسط رایانه‌های کوانتومی جمع‌آوری شوند محافظت کرده باشند. دو هفته پیش، دانشمندان در چین اعلام کردند که برای محافظت از رایانه کوانتومی اوریجین ووکانگ (Origin Wukong) یک «سپر رمزگذاری» جدید نصب کردند و تقریباً در همین زمان، پژوهشگری به نام ییلِی چن (Yilei Chen)  کشف کرد که رایانه‌های کوانتومی به طور بالقوه می‌توانند نوعی الگوریتم را که شکستن آن بسیار دشوار است، هک کنند. این الگوریتم مبتنی بر بخشی از ریاضیات است که آن را به «مشبکه» می‌شناسند و نکته جالب این است که روش‌های مبتنی بر شبکه در سیستم امنیتی جدید آی مسیج (اپل) نیز با همین روش، یعنی «الگوریتم استاندارد پساکوانتومی» رمزگذاری شده است.

الگوریتم مشبکه چیست؟

الگوی «مشبکه» متشکل از نقاطی است که مانند کاشی‌های کف حمام یا ساختار یک الماس به طور منظم تکرار می‌شوند، اگرچه شبکه‌ها می‌توانند ابعاد زیادی داشته باشند (بیش از دو یا سه)، اما همه آنها از یک ایده اولیه برای تکرار نقاط به روشی قابل پیش‌بینی پیروی می‌کنند.

بخش بزرگی از رمزنگاری مشبکه، بر پایه یک سؤال به ظاهر ساده است: اگر یک نقطه مخفی را در چنین شبکه‌ای پنهان کنیم چقدر طول می‌کشد تا شخص دیگری این نقطه مخفی را پیدا کند؟ این بازی مخفی‌کاری می‌تواند راه‌های بیشتری برای محافظت از داده‌ها ایجاد کند.

نوع دیگری از مشبکه که به «یادگیری با خطا» شناخته می‌شود بسیار پیچیده است و شکستن رمز آن حتی برای رایانه کوانتومی نیز دشوار است. با بزرگ شدن اندازه مشبکه، مقدار زمان لازم برای پیچیدگی آن حتی برای رایانه کوانتومی نیز به‌طور تصاعدی افزایش می‌یابد.

یکی دیگر از روش‌های رمزگذاری بر اساس دشواری فاکتورگیری اعداد بزرگ انجام می‌شود، اما مشکل دیگری به نام «مسئله زیرگروه پنهان» وجود دارد که ارتباط نزدیکی با این روش دارد و حل آن نیز بسیار دشوار است. این مسئله در بسیاری از زمینه‌ها از جمله علوم کامپیوتر و ریاضیات کاربرد‌های مهمی دارد.

رویکرد ییلی چن نشان می‌دهد که رایانه‌های کوانتومی ممکن است بتوانند مسائل مشبک را تحت شرایط خاص سریع‌تر حل کنند. بر همین اساس، کارشناسان نتایج او را بررسی کردند و به سرعت یک خطا پیدا کردند. پس از کشف این خطا، چن نسخه به‌روز شدۀ مقاله خود را منتشر کرد و به توصیف این خطا پرداخت.

مقاله چن باعث شده است که بسیاری از رمزنگاران به امنیت روش‌های مشبکه بی‌اطمینان شوند و برخی هنوز در حال ارزیابی هستند که چگونه می‌توان از ایده‌های چن برای رفع این خطا استفاده کرد.

نیاز به توسعه ریاضیات

مقاله چن طوفانی در جامعه کوچک رمزنگاری به پا کرد، اما در سطح جهانی تقریباً هیچ‌توجهی به آن نشد؛ شاید به این دلیل که شمار کمی از مردم ارزش این کار یا پیامد‌های آن را درک می‌کنند.

سال گذشته، زمانی که دولت استرالیا به سراغ یک استراتژی ملی کوانتومی رفت تا کشورش را در صنعت کوانتومی، جهانی کند، یک اشتباه بزرگ انجام داد: اصلا به ریاضیات نپرداخت! استفاده حداکثری از رایانه‌های کوانتومی و آمادگی برای گسترش آنها به آموزش عمیق ریاضی برای تولید دانش و تحقیقات جدید نیاز دارد.

این گزارش از پایگاه خبری دِکانورسیشن به فارسی برگردان شده است.

انتهای پیام/

نازنین احسانی طباطبایی

دیگر خبرها

  • همه دعوتند؛ مراسم «ستاره‌های دختران کُرد زمین» در سنندج
  • پیش‌بینی ستاره پیشین لیورپول، هواداران را غافلگیر کرد
  • راموس مبهوت درخشش ستاره رئال شد (عکس)
  • ستاره‌های بایرن از بازی برگشت در برنابئو می‌ترسند!
  • کاپیتان بایرن پشت ستاره کره: فوتبال همین است
  • «میان ستاره‌ای» نولان اکران مجدد می‌شود
  • رفاقتی در میان راهپیمایی‌ها/ از تدریس برابر چشم ساواک تا تشکیل شبکه‌های زیرزمینی
  • ظهور شاه‌کلید قفل‌های دیجیتال/ رایانه‌های کوانتومی رمزگذاری را بی‌معنا می‌کنند
  • نمای حیرت‌انگیز اسب سیاه آسمان از نگاه تلسکوپ فضایی جیمز وب / عکس و فیلم
  • استایل عجیب ستاره سیتی: هالند سیبیلو شد! (عکس)